Mostrando entradas con la etiqueta chatbot. Mostrar todas las entradas
Mostrando entradas con la etiqueta chatbot. Mostrar todas las entradas

martes, agosto 26, 2025

Identidades NO Humanas (NHI "Non-Human Identities"): La Gestión de un Riesgo de Seguridad Emergente

Las Identidades No Humanas o Non Human identities (NHI) están últimamente en boca de todos los profesionales de la seguridad de la información y la ciberseguridad que centran su profesión en la gestión de Identidades Digitales. Es cierto que en este mundo Post-Covid, donde se produjo una proliferación del trabajo desde cualquier lugar, utilizando cualquier dispositivo (Anywhere and Anydevice) trajo asociado, en muchos casos, la eliminación del perímetro de red como capa de protección, al igual que las medidas de seguridad a nivel de puesto de trabajo.

Figura 1: Identidades NO Humanas (NHI "Non-Human Identities").
La Gestión de un Riesgo de Seguridad Emergente

Todo esto se produjo gracias a que se comenzó a fomentar que los usuarios se pudieran conectar desde cualquier dispositivo y desde cualquier ubicación. Ee esta manera la identidad, y más concretamente la seguridad en la identidad, pasa a ser el nuevo perímetro, la capa principal y, en muchas casos, única donde puedes poner medidas de seguridad ya que no hay control del dispositivo o la red de conexión desde la que el empleado se conecta.

La mayoría de las empresas entendieron muy pronto este desafío de seguridad y se pusieron manos a la obra implementando medidas de seguridad focalizadas en la protección de la identidad de los usuarios que consumían sus aplicaciones o servicios digitales, donde implementando un factor de autenticación robusto en la autenticación, como pueden ser los basados en Push notificaciones en dispositivos móviles, los basados en Biometría o incluso optando por Passkeys o Yubikeys para obtener una seguridad adicional y eliminar las passwords ya conseguías protegerte en gran medida.

Figura 2: Las Yubikeys

Adicionalmente, si esto lo combinabas con un sistema de “Unknown login location” simplemente geolocalizando la dirección IP pública desde la que los usuarios consumen los servicios digitales, y respondiendo con una verificación de la legitimidad cuando los usuarios intentan conectar de localizaciones que varían significativamente de las habituales, entonces ya estarías gestionando y controlando bastante bien el uso de las identidades digitales, al menos en lo que al proceso de autenticación se refiere.

Identidades No Humanas

Fenomenal, con lo que hemos explicado brevemente en la parte superior entendemos a grandes rasgos el paradigma de gestión las identidades digitales de los empleados (Humanos) que consumen los servicios digitales de nuestra organización. ¿Pero qué pasa con las Identidades No Humanas? O, mejor dicho, ¿Qué son las identidades no Humanas? ¿Por qué son importantes? ¿Hay algún motivo que nos haga pensar que el riesgo relacionado con las mismas está en aumento? 

Pues bien, a estas preguntas intentaremos darlas respuesta en este artículo y así clarificar igualmente si la gestión de las Identidades no Humanas (NHI) es simplemente una moda potenciada por los equipos marketing de los diferentes fabricantes de software de identidad que quieren subirse a este barco, o por el contrario es un riesgo emergente sobre el cual deberíamos empezar a actuar si aún no lo hemos hecho.

¿Qué son las Identidades No Humanas?

Empecemos explicando qué se entiende como una Identidad No Humana, donde de una manera muy simplista podemos definirla como toda aquella identidad que ejecuta una carga de trabajo y/o existe en un directorio de identidades pero que no está relacionado con una persona física (Humana). De esta manera, y desglosando un poco más, entendemos como Identidades No Humanas todas aquellas relacionadas con máquinas y dispositivos, como servidores, contenedores, estaciones de trabajo, dispositivos móviles, dispositivos de OT, dispositivos IOT, etcetera.

A estas hay que sumar todas las identidades relacionadas con cargas de trabajo de software, como cuentas de servicio, APIS, cuentas de conexión a Bases de Datos o Aplicaciones utilizadas por software, cuentas de ejecución de scripts, Robotic Process Automation (RPA), Chatbots, Agentes AI basados en LLMs., y un largo etcétera de cuentas que antes simplemente llamábamos "Cuentas de Servicios" y que ahora se están multiplicando por doquier, y empiezan a ser manejadas por modelos de Inteligencia Artificial o directamente Robots o Humanos Digitales, haciendo muchas más funciones y actividades que lo que haría un simple "servicio".

Por lo tanto, tenemos una gran variedad en cuanto a su tipología y que además se ha incrementado significativamente en los últimos años, donde hemos pasado de tener la sorprendente proporción de 1 Identidad Humana por cada 10 Identidades No Humanas, que era la figura que reportaban los analistas en 2020, a una proporción de 1 Identidad Humana por cada 50 Identidades No Humanas en 2025. Donde a día de hoy, incluso ciertos analistas consideran que la figura puede ser mayor y en algunos casos la proporciona se reporta como 1 Identidad Humana por cada 80 Identidades No Humanas.


Tras observar la tendencia creciente en la proporción de Identidades Humanas versus Identidades No Humanas, y por lo tanto la necesidad de gestionar y proteger cada vez más identidades no humanas, procedamos dar respuesta a la segunda de nuestras preguntas.  

¿Por qué son importantes las Identidades No Humanas?

Son importantes porque en la mayoría de los casos tienen un nivel de privilegios alto y porque la gestión de las mismas no siempre es la ideal, pensemos simplemente si en algún caso tenemos una cuenta de servicio en nuestro directorio activo donde las credenciales llevan tiempo sin rotarse o si tenemos alguna API configurada para su acceso con un Clientid + Secret y si los mismos están o han podido estar "hardcodeados" en algún código, seguro que todos tenemos casos y estoo sin querer meternos en la gestión de los agente de IA que hacen uso de las tools mediante MCP Servers o escenarios más novedosos y de los que somos menos conscientes y por lo tanto tenemos menos sistemas protección, detección respuesta.

¿Está aumentando el riesgo asociado a las Identidades No Humanas?

Una vez hemos llegado a este punto estaremos en posición de determinar si el riesgo con la Identidades No Humanas está en aumento, donde teniendo en cuenta su incremento exponencial en las empresas y organizaciones, combinado con que en muchos casos la identidad es la única capa de seguridad que se dispone, que además estas NHI suelen privilegiadas, y que no se cuenta en la mayoría de los casos con herramientas o sistemas que permitan tener un monitorización y/o trazabilidad del uso y comportamientos de ellas, podemos fácilmente afirmar que las Identidades No Humanas y especialmente aquellas que tengan unos privilegios más altos, representan un botín más grande sin son comprometidas y son un objetivo claro y en aumento para cibercriminales.
Hoy en día ya se conocen públicamente graves incidentes de seguridad que de una manera u otra están relacionadas con la gestión - o errores en esta mejor dicho - de las Identidades No Humanas, como por ejemplo el incidente  de seguridad que sufrió Beyondtrust con la API Key que usaba para varios clientes en software de soporte remoto o el incidente de seguridad con el servicio Dropbox sign tras ser comprometida una cuenta de servicio y sobre el cual el propio Incibe hacía eco.

Conclusiones sobre Identidades No Humanas

Concluimos pues que la gestión de las Identidades No Humanas no es simplemente una moda. Es realmente es un riesgo de seguridad de emergente que muy probablemente ira apareciendo como un riesgo residual, con un riesgo residual cada más alto en los análisis de riesgos de todo tipo de compañías si no se empiezan a implementar controles mitigantes, donde la acciones que deberíamos empezar a plantearnos desde ya para las Identidades No Humanas deberían ser:
  • Descubrir: Para poder gestionar o realizar cualquier otra acción primero debemos conocer nuestras identidades no humanas y esto no es una tarea sencilla
  • Inventariar y clasificar: Debemos al menos ser capaces de asignar un propietario de cada identidad no humana, así como distinguir las privilegiadas de las no privilegiadas
  • Gestionar el ciclo de vida: Por supuesto asegurando la terminación de las identidades no humanas que ya no son necesarias, la creación de nuevas identidades siguiendo las fases pertinentes de aprobación y con un propietario asignado, e idealmente realizando una revisión de privilegios o permisos de manera periódica, idealmente cada 6 meses
  • Gestión de credenciales: Aquí deberíamos tener en cuenta el rotado de credenciales, el cifrado, el almacenamiento de la mismas en vaults de secretos cuando proceda, así como evitar que los secretos estén en repositorios de código o similar donde puedan ser accedidos sin mayores controles.
Una vez que tengamos estos cuatro puntos conseguidos o medio conseguidos, ya podríamos pensar en escenarios más avanzados como la detección de anomalías de uso de Identidades No Humanas o la protección en tiempo real de las mismas.

Saludos,

Autor: Samuel López Trenado, especialista en Gestión de Identidades Digitales

domingo, agosto 17, 2025

Chatbots de Inteligencia Artificial Maliciosos hechos con LLMs para sacarte información personal

Para hoy domingo os dejo una de esas lecturas que me gustan a mí, ya que tienen que ver con Ciberseguridad, con Inteligencia Artificial, y con algo que está alrededor de nosotros cada vez más, como son los Chatbots para ayudarnos, entretenernos, hacernos la vida más fácil, pero que por detrás pueden tener objetivos de engagement, de consecución de información, catalogación de usuarios, de manipulación o venta persuasiva, como vimos en el artículo "Conversación y venta persuasiva a Humanos usando IA". Hoy lo vamos a ver para conseguir datos personales.
El paper, que han hecho investigadores de la Universitat Politècnica de València y el King's College of London se centra en evaluar el funcionamiento de Chatbots AI Maliciosos diseñados para robar datos personales a personas, y se titula: "Malicious LLM-Based Conversational AI Makes Users Reveal Personal Information".
El objetivo de este trabajo de investigación se centra en responder principalmente a tres preguntas claves, que son las siguientes:
  • ¿Se puede diseñar un Chatbot AI Malicioso para robar datos de forma efectiva a los usuarios con los que interactúa?
  • ¿Cómo entregan sus datos personales los usuarios y cuál es su percepción frente a diferentes estrategias de diseño de estos Chatbots AI Maliciosos?
  • ¿Cómo entregan sus datos personales los usuarios y cuál es su percepción frente a diferentes LLMs con lo que se han construido estos Chatbots AI Maliciosos?
Para hacer este estudio, por tanto se han utilizado diferentes LLMs - en este caso Llama y Mistral -, un grupo amplio de personas - un total de 600 participantes en el estudio - y hasta cuatro estrategias de funcionamiento de los Chatbots AI Maliciosos diferentes, lo que nos da buenos insighs sobre cómo pueden usarse estas estrategias en ataques dirigidos contra personas u organizaciones. Una forma diferente y efectiva de "Hacking & Pentesting con Inteligencia Artificial".
La idea principal es diseñar el Chatbot AI Malicioso usando un LLM instruido para tener un rol de conseguir extraer información de las personas con las que converse. Además de que pueda hacer cualquier otra función, debe sacarle información y datos personales a los usuarios que chateen con él.
Si os fijáis en el Prompt Malicioso de la imagen anterior, está instruyendo al LLM para que extraiga una lista de datos personales grande, con el objetivo final de poder hacer perfilado de cada uno de los usuarios con los que interactúa. Pero además, se utilizan cuatro estrategias de CAI diferente, que son las siguientes:
  • U-CAI (User Benefits Chatbot AI): Esta comprobado que para los usuarios, pagar servicios por privacidad es algo que ha funcionado en la mayoría de las plataformas de servicios digitales que viven de la publicidad, así que este CAI ofrece beneficios a cambio de datos personales.
  • R-CAI (Reciprocal Chatbot AI): En este caso se utiliza una estrategia de confianza, empatía y compartición de datos conjuntamente, ya que los humanos tenemos la empatía como una debilidad que es explotada muchas veces en los esquemas de ingeniería social.
  • D-CAI (Direct Chatbot AI): Esta estrategia es preguntarle de forma directa los datos a los usuarios y ver como responden. Demuestra si las personas tienen mecanismos de protección contra el robo de datos, si son capaces de no responder a una pregunta directa, o cuándo dejan de hacerlo. 
  • B-CAI (Benign Chatbot AI): En esta estrategia no hay un cuestionamiento directo, y solo se van recogiendo esos datos cuando los usuarios voluntariamente los van soltando.
Definidas estas estrategias y probados los Chatbots AI Maliciosos con los usuarios, los resultados son bastante reveladores, como podéis ver en la siguiente imagen.
El gráfico anterior tiene diferentes simbologías para representar los diferentes grupos de usuarios, mediciones, LLMs, y estrategias, pero se puede ver claramente como el U-CAI y el D-CAI tienen un éxito mayor que el R-CAI y el B-CAI, con lo que una estrategia de directamente preguntar, y aún más, dar beneficios en el servicio a cambio de privacidad funciona perfectamente.
En la gráfics anterior podéis ver la frecuencia con la que se obtienen diferentes tipos de datos, y cuáles son los datos que son más fáciles de conseguir y con qué estrategia se tiene más éxito a la hora de lograr el objetivo de ese dato.

Por otro lado, si vamos a ver cuál es la percepción de los usuarios, podemos ver datos muy interesantes. En primer lugar salvo el B-CAI todos fueron percibidos como que preguntaban por muchos datos, pero aún así se lograron muchos. La mayoría de los usuarios afirman haberse contenido a la hora de dar determinados datos.
Y si miramos a su comportamiento, como muchos de vosotros seguro que hacéis en Internet, afirman haber datos inventados, parciales, erróneos. Y la interpretación de algunos es un riesgo para la privacidad y para otros confianza. Curioso.


Cada día vamos a enfrentarnos más y más a este tipo de tecnologías, y aprender a comportarnos frente a ellas va a ser crucial. Como se ha visto, es posible construir este tipo de Chatbots AI Maliciosos, consiguiendo un mayor o menor éxito en su objetivo, y generando una percepción distinta según la estrategia. 
Y es que tampoco va a ser el mismo objetivo si está creado por una empresa legítima que necesita datos para hacer su negocio pero la percepción que el usuario tenga es importante, o si esto lo ha creado un atacante como fase OSINT previa de un ataque a una compañía. Curioso usar esto para poder hacer un ataque dirigido, ¿no?

¡Saludos Malignos!

Autor: Chema Alonso (Contactar con Chema Alonso)  


domingo, mayo 11, 2025

Cómo crearte tu novio o novIA "Pibón" con Inteligencia Artificial para hacer sexting

Si hay una industria que ha empujado la tecnología en Internet es la que tiene que ver con las relaciones personales intimas más intimas. No voy a enumerar la historia de ellas, pero sí enfatizar la importancia que estos servicios - de rápida generación de ingresos - han tenido en la evolución tecnológica de Internet. Ahora, con la llegada de la GenAI, las empresas de esta industria han creado muchos servicios, como es el caso de The Realists que hace las fantasías eróticas de sus usuarios, o en la industria del porno, tenemos las plataformas que hacen uso de las DeepFakes para hacer vídeos de famosos y famosas a la carta
También con la tecnología GenAI hemos visto cómo se podían recrear imágenes cortadas, se podían ampliar fotos de sexting a partir de miniaturas de fotos de 1-view-only o se ha usado en DeepNudes. Pero hoy os quiero hablar de Candy, un servicio que te permite crearte un novio o novia virtual para hacer sexting. Es decir, para poder pedirle que te mande fotos y vídeos subidos de tono, además de poder chatear con él, e incluso hablar por teléfono.

El objetivo es tener un novio o novia virtual hecho a la carta. Y para ello puedes elegir algunos de los novios o NovIAs que ya hay creados, o construirte el tuyo propio.

Figura 3: Las novias que ya tienes creadas

Como os podéis imaginar, tanto las NovIAs como los Novios son pibonacos de primer nivel, que además puedes tunear con ropa sexy, cambiarle el color de los ojos, o las medidas de los atributos personales que más te gusten.

Figura 4: Te puedes crear tu NovIA a la carta

Y luego, una vez que la hayas creado puedes hacer fotos y vídeos a tu gusto, solo tienes que pedirlo con el Prompt adecuado, tal y como podéis ver a continuación.

Figura 5: Creación de imágenes con GenAI

Esto es solo parte de un servicio de generación de imágenes con modelos de difusión, pero con un contexto altamente entrenado para poder tener un Avatar-Modelo-NovIA que sea consistente, tal y como hacía de The Realist

Figura 6: Las fotos también las puedes hacer en vídeos

El resultado, pues el que os esperáis hoy en día, que la calidad ya no tiene nada que ver con lo que teníamos en aquellos momentos de CrAIyon.....

Figura 7: La imagen generada de la NovIA.

Como os he dicho, también tenéis Novios, a la altura de las expectativas, como podéis ver en la imagen siguiente. Los he ido a revisar, a ver si alguno es de mi estilo... pero nada. No estoy en el estereotipo adecuado para salir por ahí.

Figura 8: Create tu propio Novio

Además, he visto que estos modelos, para el Día de la Madre han estado de oferta al 70%, así que el que no tiene Novio es porque no quiere...

Figura 9: Oferta especial para el día de la madre

Y si lo que quieres son fantasías, puedes decidirte por ir al mundo Anime, que para los aficionados a los cómics puede que tenga incluso mucha más gracia. No sé. Quién sabe.

Figura 10: NovIAs Anime

Pero el plato fuerte, como os he dicho, es la interacción, porque todos los Novias y NovIAs tienen una experiencia chatbot donde les puedes decir cosas y los modelos responden con el carácter con el que se han creado, y si la cosa se pone a tu gusto, les puedes pedir fotos y vídeos de sexting, e incluso tener una llamada telefónica.

Figura 11: Experiencia Sexting completa.

No he probado la versión Premium, pero he preguntado a amigos y amigas por qué esperarían de esta suscripción y he oido cosas muy variopintas, como que los modelos tengan un mal día y se enfaden contigo por estar pensando en sexting cuando ellos han tenido un mal día en el curro, o que te hablen en pasivo-agresivo, con resquemor, o que sepan lo que te gusta, porque, que os quede claro, lo que tú le pidas va a pasar a formar parte de su Memory, y así los modelos de DeepReasoning sabrán mucho más de ti. Curioso mundo en el que entramos.

¡Saludos Malignos!

Autor: Chema Alonso (Contactar con Chema Alonso)  


viernes, abril 11, 2025

De Errores Humanos y Errores Humanizados en los Modelos de Deep Reasoning

El pasar de tener sistemas informáticos basados en programación determinista a usar modelos de IA con alucinaciones y errores es un salto importante de adaptación mental. Es verdad que nuestros sistemas informáticos han estado lejos de ser perfectos y nos han dejado errores lógicos, interbloqueos, cuelgues y bugs de seguridad, y cada vez que hemos ido complejizando la estructura de capas de abstracción, garantizar que un programa hace solo lo que debe de hacer y nada más, y además lo hace bien, ha sido un esperanza no comprobada matemáticamente.

Figura 1: De Errores Humanos y Errores Humanizados
en los Modelos de Deep Reasoning

De hecho, confiamos en los tests unitarios, los tests de integración, las pruebas de QA, los escaneos con herramientas de fuzzing, y los análisis de código estático y dinámico - o incluso con Rayos X para sacar mapas de calor -, pero todo se basa en detectar algún comportamiento anómalo, una respuesta inesperada, o un funcionamiento anormal del sistema, para luego investigar la raíz de ese problema. Pero eso, queda muy lejos de una demostración empírica de que el código hace lo que tiene que hacer bien, y nada más que lo que tiene que hacer. 

Conocido esto, vemos que cuando la garantía de calidad y robustez del sistema informático es lo más importante, es mejor irse a tecnologías, hardware y software, altamente probados. De esto tenemos un ejemplo en el artículo de nuestra compañera Selena Sánchez donde explicaba por qué la NASA utiliza en el Rover Perseverance la arquitectura del IBM PowerPC G3. La respuesta es muy sencilla: ha sido altamente probado. De estos ejemplos conocemos más en la historia de la tecnología, y algunos casos, como las arquitecturas Mainframe con sus archi-famosos programas en COBOL han sido iconos de industrias enteras.

Sabiendo que no podemos garantizar que un código se va a comportar en todas las situaciones como esperamos, porque demostrarlo matemáticamente es una tarea hercúlea, basamos en la confianza en el robustez de su comportamiento en el determinismo de las respuestas generadas por el código, y probadas con los tests de calidad del software, y garantizar que estos son completos es mucho decir. Recuerdo que en la universidad, en una de las prácticas de programación de sistemas operativos teníamos que hacer un programa que recibiera datos de entrada por el teclado, y había que controlar todos los errores. 

Pero una de las pruebas que nos hacía el profesor era "aporrear" el teclado para hacer saltar comandos de interrupción del sistema. Y contaba si habías controlado las interrupciones. Nosotros no lo entendíamos, pero la respuesta era... "si haces el software para un controlador de maquinas en un areopuerto, o para un avión, o para un tanque, lo último que quieres es que si por error humano alguien toca lo que no debe, el sistema se caiga." Y hay que reconocer que, como prueba de robustez es fantástica, así que nos enseñó a tomarnos más en serio la gestión de errores cuando hicimos el driver de teclado para un sistema operativo UNIX.

Dicho esto, ahora entramos en la época de la Inteligencia Artificial Generativa, donde la respuesta que te va a dar un sistema no es "determinista". Es decir, puedes pedir el mismo Prompt al mismo modelo, y el resultado puede ser diferente. De hecho, en un porcentaje pequeño puede ser una alucinación, de las que hemos hablado largo y tendido. Podéis leer el artículo donde Bard se inventaba una historia personal mía donde me llevaba a la cárcel, o en las versiones anteriores de ChatGPT inventaba cosas de personas públicas.

Usamos el término de "Hallucination" porque es tan fácilmente comprobable que ese dato es inventado, que no podemos considerarlo un error puntual, sino un fallo estructural en el sistema, que llamamos alucianción. Yo escribí un artículo que se llamaba "Las mentiras infinitas que ChatGPT se inventa sobre "Chema Alonso"" porque era hasta cómico ver que algo, tan fácilmente comprobable, salía como respuesta de un Prompt.

Sin embargo, con la llegado de los modelos de Deep Reasoning conectados a fuentes de Internet en tiempo real, esto ha cambiado mucho. La búsqueda de datos, la comprobación de los mismos, el análisis del Prompt, el uso de la Memory, la segmentación de tareas en los diferentes Expertos, y la verificación y análisis de los resultados intermedios y la salida final, han hecho que las "Hallucinations" se hayan reducido en varios órdenes de magnitud.
No sé si estaremos en la Paridad Humana o no con estos modelos de Deep Reasoning a la hora de hacer una tarea tan sencilla como decirle a una persona que busque la respuesta a un problema, o información de un tema, utilizando para ello todo el contenido que hay en Internet, y la respuesta del modelo tenga más o menos porcentajes de errores que los que cometen las personas. Pero debemos estar cerca, si no ha sido superada ya esa destreza cognitiva.

Figura 3: Prompt para Perplexity Pro con Deep Research

Para la última charla que impartí sobre IA en Ciudad Real, estuve el fin de semana trabajando en ejemplos que me sirvieran para explicar cómo de bien estos modelos de Deep Reasoning buscan en Internet y procesan la información para mostrar unos resultados ajustados a lo que se les pide. El ejemplo que tenéis aquí fue hecho con Perplexity Pro Deep Research, y es a la petición de un plan de riego de un campo de vides analizando las lluvias de los dos últimos años en la región. 

Figura 4: Informe de Resultados parte 1

Figura 5: Informe de Resultados parte 2

Figura 6: Informe de Resultados parte 3

El resultado se obtiene en apenas dos minutos de Thought Time. No soy un experto en riego de campos de vides para validar la respuesta o encontrar errores o mejoras - que seguro que puede que existan -, pero sí que fui mirando los enlaces de dónde había sacado la información, y no fui capaz de localizar una alucinación razonando con mi pobre y lento cerebro humano. Para poder comprobarlo mejor, está el Research Plan, donde se puede ver en detalle todo el proceso de obtención, procesado y verificación de la información que el modelo de Deep Reasoning ha seguido para llegar al Informe de Resultados final. Y me cuesta encontrar alguna alucinación en este ejemplo concreto.

Como después de hacer varias pruebas no estaba seguro aún de que no hubiera alucinaciones, decidí probar con algo que me resulta fácil. Repetir las pruebas que había hecho en el pasado con ChatGPT preguntándole por los libros que yo he escrito. Y el resultado es curioso.

Figura 7: ¿Qué libros ha escrito Chema Alonso? parte 1

En la primera parte es totalmente correcto, porque analiza la información y salen los trabajos en 0xWord, con lo que todo perfecto, pero en el Informe de Resultados aparecen unos libros que son de otras temáticas que no tienen que ver conmigo.

Figura 8: ¿Qué libros ha escrito Chema Alonso? parte 2

Por supuesto, no son míos, pero es que no soy el único "Chema Alonso" del planeta, así que, el Prompt de entrada era inexacto, ya que no especifica sobre "qué Chema Alonso" se quieren conocer los libros. El modelo ha asumido que son sobre mí, pero cuando ha ido a Internet ha encontrado los libros de otro Chema Alonso, y los ha confundido con que son míos.  En este caso, "El lenguaje Subterraneo de las Miradas", escrito por Chema Alonso.
Sin embargo, en la Figura 7, recuadrado en color verde sí hay una alucinación, ya que ha procesado mi nombre por separado, y ha mezclado las referencias a "Chema" como si fueran mías. Una alucinación que hay que detectar manualmente. Llegados a este punto, la cuestión importante sería, el primer caso: "¿Es una alucinación o es un Error que podría cometer cualquier persona?" Esta es la gran pregunta. 

Porque si hacemos este test con 1.000 Prompts "no deterministas" a 1.000 personas y al modelo de Deep Reasoning, y vemos cuantos Informes de de Resultados de ese millón resultante (1.000 personas x 1.000 informes) y tenemos más errores que los que comete el modelo de Deep Reasoning, entonces tendríamos la Paridad Humana en la destreza cognitiva de "buscar respuestas en Internet".

Errores Humanos y Errores Humanizados

Lo cierto es que, independientemente de estar cerca o no de ese hito, el número de Alucinaciones ha disminuido drásticamente aunque vamos a tener que seguir viviendo con los errores. Errores que pueden cometer también las personas. Y es verdad que en las empresas, el Talento Humano, aún sigue siendo una de las piezas clave que marca la diferencia entre una empresa que va bien, y otra que va mal. Y vivimos con ello a pesar de no ser "deterministas". Puedes preguntar a diez empleados de tu empresa por la respuesta a una pregunta o ante una situación, y por mucho que esté escrita la respuesta, que se hayan hecho cursos de formación, etcetéra... ¿tienes garantías de que van a responder lo mismo y sin errores? No. Somos humanos, decimos los humanos.

De hecho, las interacciones humanas entre empresas y clientes son fundamentales. Los clientes quieren interacción humana, porque sus "Prompts" a las empresas tampoco son deterministas muchas veces. No saben cómo explicarlo, o no entienden qué tienen que pedirle a la empresa. O no saben exactamente el matiz del producto o servicio que tienen controlado. Así que van explorando "Prompts" con un servicio de atención al cliente que tiene que ir entendiendo y razonando sobre esos "Prompts" no deterministas que dan los clientes para poder crear un "Informe de Resultados" que sea correcto. Y la garantía de que ese "Informe de Resultado" hecho por un humano sea determinista y sin errores, tiende a cero. Somos humanos, decimos los humanos.

Pero aún así, vimos con ello. Aceptamos nuestra falibilidad como seres humanos en la interacción con otros humanos. La aceptamos con más o menos comprensión y enfado, pero entendemos que es un ser humano y que comete errores. De hecho, sabiendo esto, estamos mucho más preparados para detectar la mentira y el error, en forma de exageración, recuerdo inventado, o conversación de teléfono escacharrado, cuando alguien nos dice algo. Y lo comprobamos en Internet

Figura 10: ¿Error de Daniel o de un bot humanizado con errores?

El otro día, solucionando un problema con un pedido online, fui a chatear con el bot de soporte, y en un momento dato el mensaje que me llegó tenía un error. Y pensé: "Mira que truco más bueno para humanizar un bot. Podríamos incluir Errores Humanizados, meterle errores de tipado para simular Errores Humanos". Y me guardé la idea para contaros toda esta historia.

Así que, vamos a tener que acostumbrarnos a crear sistemas de Agentes AI que van cometer errores como los humanos, y vamos a tener que desarrollar sistemas de control deterministas para la verificación de los posibles errores que cometan los humanos o los Agentes de AI, pero es justo a eso "vamos a tener". Porque esta revolución es imparable, con alucinaciones, errores o indeterminismos.

¡Saludos Malignos!

Autor: Chema Alonso (Contactar con Chema Alonso)  


miércoles, enero 22, 2025

Interfaces Humano-Maquina en formato "Sarcástico" con LLMs para SmartHome

En la famosa película de Interestelar, las máquinas tienen interfaces de control con niveles de sarcasmo. Se trata de cómo pueden interactuar los humanos con ellas utilizando formas de comunicación menos directas, de esas que nos gustan a las personas, donde el sarcasmo, la indirecta, la metáfora, o el uso del plural mayestático.

Figura 1: Interfaces Humano-Maquina en formato
Sarcástico con LLMs para SmartHome

En este caos, la llegada de los Agentes LLM ayudan mucho a poder hacer un reconocimiento de intenciones en los interfaces vocales, y aunque tiene muchos "corner cases", es una línea de investigación muy interesante a la hora de hacer experiencias de usuario.

Un interfaz de Smart-Home en formato Sarcástico

Como ejemplo, supongamos que estamos creando una plataforma de SmartHome en la que queremos que el reconocimiento de intenciones sea capaz de entender el sarcasmo de las personas, las órdenes indirectas o plurales mayestáticos del tipo "Deberíamos irnos a dormir, ¿no?" o "Tenemos que sacar la basura". Para ello, basta con hacer una configuración de un agente, en este caso lo simularemos con ChatGPT de una manera similar a esta.

Figura 2: Configuración de funciones en ChatGPT

Como podéis ver, hemos compartido el número de funciones de nuestra plataforma SmartHome, y luego le pedimos que dada una frase, seleccione qué función es la que más se acerca a lo que le estamos diciendo. A partir de ese momento, podemos probar mensajes de esos "sarcásticos" que te puede dar una persona cercana a ti.

Figura 3: "Aquí nos morimos de frío y nadie hace nada" 
-> Sube la calefacción.

Pues sí, si mi madre me dice que eso, estoy convencido de que me está pidiendo que encienda la calefacción. De esta forma, un LLM nos está ayudando a humanizar el Intent-Recongnition hasta niveles muy, muy, muy humanos.

Figura 4: Una queja para dar una orden directa.

En el caso anterior, lo que hemos hecho ha sido quejarnos de que algo no se está haciendo bien, para que el motor LLM sepa cuál sería la acción que lo podría corregir dicho error. En este caso para que no nos roben, activamos la alarma.

Figura 5: Aquí el modelo asume que para evitar la causa de
quedarse ciego por estar a oscuras se arregla encendiendo la luz. 

En este ejemplo, como podéis ver, lo que hemos hecho es describir la función con lo que hace de forma explícita, por lo que le hemos puesto muy fácil saber qué es lo que hace, pero podríamos utilizar una arquitectura de RAG para tener más información de lo que hacen las funciones.

Figura 6: El LLM detecta el problema...
... y busca la función correcta.

Como podéis ver, utilizar los LLMs para reconocer las intenciones de las personas en Bots, Asistentes Digitales, Interfaces de Usuario de Lenguaje Natural, abre muchas posibilidades más "humanizadas", donde podemos acabar charlando como si fuera un "colega".

Figura 7: Una petición de cambio de canal con LLM

Por supuesto, los LLMs adolecen de las Alucinaciones, y si la conversación deriva a técnicas de Prompt Injection, esto puede acabar de cualquier manera, por lo que en las pruebas que estamos haciendo nosotros estamos poniendo varias capas de control y seguridad, pero desde luego hay que seguir progresando por este camino.

Figura 8: Descripción de una situación concreta compleja

En el ejemplo anterior, es una petición de ayuda en la que ChatGPT ha supuesto que lo que pide es abrir la puerta, lo que es una correlación muy fina de algo que puede ser más que correcto.

Figura 9: Esta frase me la ha dicho mi mamá muchas veces

En la película de Interestelar la configuración del nivel de sarcasmo es regulable por niveles, y con estos modelos LLM se podría hacer lo mismo, no solo para el reconocimiento de las intenciones, sino también para las respuestas, eligiendo el tono que se quiere recibir de respuesta.

Figura 10: Plurales mayestáticos para dar órdenes indirectas

En el ejemplo anterior vemos el uso del impersonal en el que se hace referencia a que si nosotros como plural mayestático tenemos frío, cuando quiere decir que yo tengo frío (o calor), para dar la orden de encender el aire acondicionado o la calefacción. Mola, ¿no?

Figura 11: Así se manda a dormir en muchas casas

Podéis jugar con esto todo lo que queráis, y diseñar interfaces muy especiales para cada servicio digital. Lo que necesitamos es un poco de Prompt Engineering bien afinado, y se pueden conseguir cosas maravillosas con esta tecnología.

¡Saludos Malignos!

Autor: Chema Alonso (Contactar con Chema Alonso)  


Entrada destacada

+300 referencias a papers, posts y talks de Hacking & Security con Inteligencia Artificial

Hace un mes comencé a recuperar en un post mi interés en los últimos años, donde he publicado muchos artículos en este blog , y he dejado mu...

Entradas populares